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Abstract- Using the cut-and-paste technique, we construct a thin-shell wormhole by surgically grafting together two copies of spacetimes of string 
inspired charged  black hole solution. The total amount of exotic matter in the shell needed to sustain the wormhole is calculated and its dependence 
with the parameters is analyzed. The dynamical stability of the stringy thin-shell wormhole is analyzed  by considering the linearized fluctuation around a 
static solution. 
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1    INTRODUCTION                                               
he study of traversable wormholes has received 
considerable attention from researchers for the past two 

and half decades. Over the last two decades, there has been 
considerable interest in the topic of thin-shall wormholes, 
solution of Einstein’s field equations which act as tunnel from 
one region of spacetime to another, through which a traveler 
might freely pass [1-17]. It was found that these geometries, 
which act as tunnels from one region of spacetime to another, 
posses a peculiar property, namely exotic matter, involving a 
stress-energy tensor that violates the null energy condition 
[18-20]. In fact, traversable wormholes violate all of the 
pointwise energy conditions and averaged energy conditions 
[21]. As the violation of the energy conditions is a particularly 
problematic issue [22], it is useful to minimize the usage of 
exotic matter. The null energy and averaged null energy 
conditions are always violated for wormhole spacetimes. As it 
is difficult to deal with exotic matter, it is useful to minimize 
the usage of exotic matter. 
 

 Visser [2], the pioneer of thin-shell wormhole, has 
proposed a way, which is known as ‘cut and paste’ technique, 
of minimizing the usage of exotic matter to construct a 
wormhole in which the exotic matter is concentrated at the 
wormhole throat. In ‘cut and paste’ technique, the wormholes 
are theoretically constructed by cutting and pasting two 
manifolds to obtain geodesically complete a new one with a 
throat placed in the joining shell. By invoking the Darmois-
Israel [23] formalism, the surface stresses of the exotic matter 
were determined. These thin-shell wormholes are extremely 
useful as one may apply a stability analysis for the dynamical 
cases, by choosing specific surface equations of state [24]. 
Recently, Eiroa and Romero [6] have extended the linearized 
stability analysis to Reissner-Nordström thin-shell geometries, 
and Lobo and Crawford [4] to wormholes with a cosmological 
constant. Visser and Poisson [3] have analyzed the stability of 
thin-shell wormhole constructed by joining the two 

Schwarzschild geometries. In this work, we study a new kind 
of thin-shell wormhole by surgically grafting two spacetimes 
of charged static black hole solution, which is often called the 
Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) 
black hole solutions. The linearized stability is analyzed under 
radial perturbation around a static solution. Throughout the 
paper we use 1== Gc . 
           
           The paper is organized as follows: In Sec. II, we 
construct a dynamic thin-shell wormhole by surgically 
grafting two spacetimes of GMGHS black hole. In Sec. III, we 
determine the total amount of exotic matter located at the thin-
shell. In Sec. IV, we perform a detailed analysis of the stability 
under spherically symmetric perturbations around a static 
solution. Finally, conclusion of the results is given in Sec. V.  
 
2 CONSTRUCTION OF THIN-SHELL 
WORMHOLE 
      

 The line element of spherically symmetric and static 
GMGHS black hole is given by [25]  
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where 0φ  is the asymptotic constant value of the dilaton field. 

The metric (1), describes a black hole of mass M  and 
magnetic charge Q  when the ratio MQ /  is small. 
          

The thin-shell wormhole is an interesting wormhole 
solution consists in applying the cut-and-past technique. We 
take two copies of GMGHS black hole solution (1), removing 
from each spacetime the four dimensional regions is described 
by  

    { }braar >≤=Ω ±±
,                (6) 

where a  is a constant and br  is the black hole event horizon, 
corresponding to the GMGHS black hole solution. 
 

To avoid the presence of an event horizon, the 

important condition bra >  is applied. The removal of these 
two regions result in two manifolds, geodesically incomplete, 
with boundaries given by the following timelike 
hypersurfaces 

  { }braar >==Ω∂ ±±
.                         (7)   

 Consider the junction surface Ω∂  as a timelike hypersurface 
defined by the parametric equation of the form 

( ) ( )φθτξξµ ,,.0)( == iixF  are the intrinsic coordinate 
on Ω∂ , where τ is the proper time on the hypersurface. The 
unit normal 4-vector µn  to Ω∂ , is defined as  
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where the ±  superscripts represent the exterior and interior 
spacetimes. Since the extrinsic curvature ijK  is not 

continuous across Ω∂ , so the discontinuity in the extrinsic 
curvature is defined as −+ −= ijijij KKK . Using the Darmois-

Israel formalism [9], at the junction interface Ω∂ , the surface 

stress-energy tensor 
i
jS  is obtained by the Lanczos equations  
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where 
i
jk  is the discontinuity of the extrinsic curvatures 

across the interface Ω∂ . 

        In terms of the surface energy density σ  and the surface 
pressure  p , the surface energy tensor may be written as 

),,( ppdiagS i
j σ−= . The thin-shell equations which is 

commonly known as Einstein’s field equations then become 
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The components of the surface stress-energy can be deduced 
from Eqs. (11) and (12) as                            
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According to the flaring out condition the area is minimal at 
the throat (then h(r) increases for r close to a  and 

0)( >′ ah ), implies that the energy-density σ  is negative at 
the throat, so exotic matter is located there. The pressure p  
may be positive. 
 
3   TOTAL AMOUNT OF EXOTIC MATTER IN 
THE SHELL 
 

The total amount of exotic matter presents in the shell 
can be quantified following [26] by the integral  

            [ ] xdgpr
3−+=Ω ∫ ρσ ,                             (17) 

where g is the determinant of the metric tensor. We introduce 

a new radial coordinate ( )arR −±=  in Ω (for ±Ω  
respectively), one obtain                                         

    [ ] φθρ
α

α

ππ
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2
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Since the shell is infinitely thin, the exotic matter does not 
exert any radial pressure, it only exerts tangential pressure 
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and it is placed in the shell, so that σδρ )(R= (δ  is the 
Dirac delta function). We therefore obtain  
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Now using Eqs. (3 ) and (15), we have 
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Thus, the total amount of exotic matter needed is depend on 
black hole mass M , magnetic charge Q  and asymptotic 
constant value of the dilaton field ϕ0. If the mass M  and 
charge Q  of the black hole are fixed, then the total amount of 
exotic matter is reduced by increasing the asymptotic constant 
value of the dilaton. Also if the magnetic charge of the black 
hole and the asymptotic constant value of the dilaton are kept 
constant, then the total amount of exotic matter is reduced by 
decreasing the mass of the black hole.  
 
4    DYNAMIC STABILITY ANALYSIS OF  
THIN-SHELL WORMHOLE 

 
The standard stability analysis method for thin-shell 

wormhole, based on the definition of a potential, is extended 
to our metric (1). From the Einstein’s field equations, it is easy 
to check the energy conservation equation 
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where )(4 ahA π=  is the area of the wormhole throat. 
The first term in the left hand side of Eq. (23) represents the 
change in internal energy of the throat and the second one is 
the work done by the internal forces of the throat, while 
according to the Ref. [15], the term in the right-hand side 
represents a flux. The above equation then may be written in 
the form  
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When [ ] )()(2)( 2 ahahah ′′−′ = 0, the flux term in the 
right-hand side of Eqs. (21) and (22) is zero and they take the 

form of simple conservation equations.  From Eq. (22), we 
obtain  
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where ‘′’ denotes differentiation with respect to a. If we choose 
a particular equation of state, in the form of )(σpp = , then 
we can formally integrate the conservation equation and 
obtain  
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p
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This relationship may then be formally inverted to yield σ  
as a function of the wormhole radius, )(aσσ = . Thus, 
rearranging the terms of Eq. (15), the dynamics of the 
wormhole throat is completely determined by a single 

equation 0)(2 =+ aVa . Here the potential )(aV  is 
defined as 
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To perform the linearized stability analysis, choice is 
to consider linearized fluctuations around an assumed static 
solution characterized by the constants 00 , σa  and 0p . 
Assuming this assumption, from Eqs. (15) and (16), we have    
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A Taylor series expansion to second order in 0aa =  

of the potential )(aV  around the static solution, yields 

[ ] [ ] [ ]30
2

00000 )(
2
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The first derivative of the potential )(aV  can be 
obtained from Eq. (25) as 
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Now using Eq. (23), the above equation can be written as 
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The second derivative of the potential )(aV  is  
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We now define a parameter β  by the relation   
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∂
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The physical interpretations of β  under normal 
circumstances interpret as the subluminal sound speed. Here 
we simply consider β  to be a useful parameter related to the 
equation of state.  By this definition, we have 

        )1)(()(2)( 2βσσ +′=′+′ aapa .                           (33) 

Using Eqs. (23) and (33), we can rewrite ( )aV ′′  as follows      
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Since we are linearizing around a static solution at 0aa = , we 

must have )( 0aV  and )( 0aV ′ are equal to zero. To leading 

order, therefore, [ ] .)(
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At this order of approximation, the equation of motion of the 
throat is  
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From Eq. (34) and considering 0)( 0 =′′ aV , one can find the 

expression for 0β  which is given by 
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has a simple vertical asymptote to the right of the asymptote,  
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Returning to the inequality 0)( 0 >′′ aV , at the throat 0aa = , 
we therefore have 
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So to the right of the asymptote, the stability region of the 
wormhole is below the graph of Eq. (37), which is shown in 
Fig. 1. 
 
 To the left of the asymptote, the sign of the inequality 
in Eq. (39) is reversed and one can obtain at 0aa =  
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So to the left of the asymptote, the stability region is above the 
graph. 

 
Fig. 1 shows typical regions of stability using 

arbitrary values of the various parameters: 1.00 =φ , 

0=
M
Q

.1, 3.0=
M
Q

, 5.0=
M
Q

, and 7.0=
M
Q

. It is 

observed that the regions above the curves on the left and 
below the curves on the right are stable.  The sign change is 

determined by inequality (38). For the values 7.0=
M
Q

 and 

more, the stable region above the left of the curve is not found. 
This is an excellent agreement with GMGHS black hole 
condition.  
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Fig.1: We have defined 
M
a0=α . Here we have plotted α  

versus 2
0β . Stability  regions for the thin-shell wormhole with 

1.00 =φ  and different values of the scalar charge Q . 
 

5     CONCLUSION 
 
In this paper, we have constructed a charged thin-

shell wormhole in dilaton gravity by surgically grafting two 
GMGHS black hole spacetimes. The surface energy density 
and tangential surface pressure on the shell is determined, the 
surface energy density is negative which ensures one of the 
most important criteria to construct a thin-shell wormhole.  
The exotic matter is localized at the thin-shell and found that 
the total amount of exotic matter needed is depend on black 
hole mass M , magnetic charge Q  and asymptotic constant 

value of the dilaton field 0φ  and we conclude that less exotic 
matter is needed when magnetic charge and asymptotic 
constant value of the dilaton field of the black hole are 
increased and/or the mass of the black hole is decreased.  

 
We have analyzed the dynamical stability of the thin-

shell, considering the linearized radial perturbation around 
the static solution at 0aa = . The stability analysis 

concentrated on the parameter β , which is a useful parameter 

and related to the equation of state. The parameter 0β  
normally interpreted as the speed of sound and the order of 
magnitude is same as the speed of sound. The region of 
stability is obtained in terms of the mass of the wormhole M, 
the radius of the wormhole throat a0 and a parameter 0β . The 

region of stability lies 2
0β  - α  plane. It is observed that for 

low values of  
M
Q

, the stable region is significant. 
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